If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-16H^2+12H+42
We move all terms to the left:
-(-16H^2+12H+42)=0
We get rid of parentheses
16H^2-12H-42=0
a = 16; b = -12; c = -42;
Δ = b2-4ac
Δ = -122-4·16·(-42)
Δ = 2832
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2832}=\sqrt{16*177}=\sqrt{16}*\sqrt{177}=4\sqrt{177}$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{177}}{2*16}=\frac{12-4\sqrt{177}}{32} $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{177}}{2*16}=\frac{12+4\sqrt{177}}{32} $
| 18q+25=11q=10 | | 3y+4=6y−2 | | 12x-4x-11-5x=25 | | 5(x+2)^2-80=0 | | 9x+3+13x-1=90 | | (3+x+5)*3=(4+x-8)*4 | | 8+4y=40 | | -9=-11+8y | | 5/6n+11/12=3 | | n-5/3n+3=0 | | (11x+15)=(32x–27) | | -2(10d+4)=32 | | 15x+100=20x=125 | | 7^x+9=15^6x | | 3(7x=8)=39 | | x.x+23=55 | | 5(d-6)=30 | | 0.02x=0.0854 | | 6y+5=38 | | 2x-3^x=3 | | 15x+13=3x | | 2x+5^4(8x+9)=35 | | 8x-(3x+5)=6x-10 | | 15x-13=3x | | 2x-6-7x+12=-19 | | x−6=-3x^2 | | -12x-9=-24x+43-4 | | 9/10=⅚v | | (x-7)÷4=(2x+1)9 | | 2x+1=3^x-2 | | 0.5x^2+10x-287.5=0 | | 100=36+b^2 |